Heritability and Artificial Selection on Ambulatory Dispersal Distance in Tetranychus urticae: Effects of Density and Maternal Effects
نویسندگان
چکیده
Dispersal distance is understudied although the evolution of dispersal distance affects the distribution of genetic diversity through space. Using the two-spotted spider mite, Tetranychus urticae, we tested the conditions under which dispersal distance could evolve. To this aim, we performed artificial selection based on dispersal distance by choosing 40 individuals (out of 150) that settled furthest from the home patch (high dispersal, HDIS) and 40 individuals that remained close to the home patch (low dispersal, LDIS) with three replicates per treatment. We did not observe a response to selection nor a difference between treatments in life-history traits (fecundity, survival, longevity, and sex-ratio) after ten generations of selection. However, we show that heritability for dispersal distance depends on density. Heritability for dispersal distance was low and non-significant when using the same density as the artificial selection experiments while heritability becomes significant at a lower density. Furthermore, we show that maternal effects may have influenced the dispersal behaviour of the mites. Our results suggest primarily that selection did not work because high density and maternal effects induced phenotypic plasticity for dispersal distance. Density and maternal effects may affect the evolution of dispersal distance and should be incorporated into future theoretical and empirical studies.
منابع مشابه
Spatially correlated extinctions select for less emigration but larger dispersal distances in the spider mite Tetranychus urticae.
Dispersal is a central process to almost all species on earth, as it connects spatially structured populations and thereby increases population persistence. Dispersal is subject to (rapid) evolution and local patch extinctions are an important selective force in this context. In contrast to the randomly distributed local extinctions considered in most theoretical studies, habitat fragmentation ...
متن کاملDispersal distance is influenced by parental and grand-parental density.
Non-genetic transmission of information across generations, so-called parental effects, can have significant impacts on offspring morphology, physiology, behaviour and life-history traits. In previous experimental work using the two-spotted spider mite Tetranychus urticae Koch, we demonstrated that dispersal distances increase with local density and levels of genetic relatedness. We here show t...
متن کاملEffects of host plant on life-history traits in the polyphagous spider mite Tetranychus urticae
Studying antagonistic coevolution between host plants and herbivores is particularly relevant for polyphagous species that can experience a great diversity of host plants with a large range of defenses. Here, we performed experimental evolution with the polyphagous spider mite Tetranychus urticae to detect how mites can exploit host plants. We thus compared on a same host the performance of rep...
متن کاملEffects of Marker Density, Number of Quantitative Trait Loci and Heritability of Trait on Genomic Selection Accuracy
The success of genomic selection mainly depends on the extent of linkage disequilibrium (LD) between markers and quantitative trait loci (QTL), number of QTL and heritability (h2) of the traits. The extent of LD depends on the genetic structure of the population and marker density. This study was conducted to determine the effects of marker density, level of heritability, number of QTL, and to ...
متن کامل